
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 39331963
handle: 10356/180461
In covert target detection, Alice attempts to send optical or microwave probes to determine the presence or absence of a weakly-reflecting target embedded in thermal background radiation within a target region, while striving to remain undetected by an adversary, Willie, who is co-located with the target and collects all light that does not return to Alice. We formulate this problem in a realistic setting and derive quantum-mechanical limits on Alice's error probability performance in entanglement-assisted target detection for any fixed level of her detectability by Willie. We demonstrate how Alice can approach this performance limit using two-mode squeezed vacuum probes in the regime of small to moderate background brightness, and how such protocols can outperform any conventional approach using Gaussian-distributed coherent states. In addition, we derive a universal performance bound for non-adversarial quantum illumination without requiring the passive-signature assumption.
20 pages, 5 figures
Quantum Physics, Optical probe, Physics, Quantum limit, FOS: Physical sciences, Quantum Physics (quant-ph), 530, Physics - Optics, Optics (physics.optics)
Quantum Physics, Optical probe, Physics, Quantum limit, FOS: Physical sciences, Quantum Physics (quant-ph), 530, Physics - Optics, Optics (physics.optics)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
