
pmid: 37327415
Passive implementations of quantum key distribution (QKD) sources are highly desirable as they eliminate side-channels that active modulators might introduce. Up till now, passive decoy-state and passive encoding BB84 schemes have both been proposed. Nonetheless, passive decoy-state generation and passive encoding have never been simultaneously implemented with linear optical elements before, which greatly limits the practicality of such passive QKD schemes. In this work, we overcome this limitation and propose a fully-passive QKD source with linear optics that eliminates active modulators for both decoy-state choice and encoding. This allows for highly practical QKD systems that avoid side-channels from the source modulators. The passive source we propose (combined with the decoy-state analysis) can create any arbitrary state on a qubit system and is protocol-independent. That is, it can be used for various protocols such as BB84, reference-frame-independent QKD, or the six-state protocol. It can also in principle be combined with e.g. measurement-device-independent QKD, to build a system without side-channels in either detectors or modulators.
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
