publication . Article . Preprint . 2019

New Semiclassical Picture of Vacuum Decay

Braden, Jonathan; Johnson, Matthew C.; Peiris, Hiranya V.; Pontzen, Andrew; Weinfurtner, Silke;
Open Access English
  • Published: 18 Jul 2019
  • Publisher: APS
We introduce a new picture of vacuum decay which, in contrast to existing semiclassical techniques, provides a real-time description and does not rely on classically-forbidden tunneling paths. Using lattice simulations, we observe vacuum decay via bubble formation by generating realizations of vacuum fluctuations and evolving with the classical equations of motion. The decay rate obtained from an ensemble of simulations is in excellent agreement with existing techniques. Future applications include bubble correlation functions, fast decay rates, and decay of non-vacuum states.
Comment: v2: supplemental material added, accepted to PRL. v1: 5 pages
Persistent Identifiers
arXiv: High Energy Physics::Experiment
free text keywords: General Physics and Astronomy, High Energy Physics - Theory, Astrophysics - Cosmology and Nongalactic Astrophysics, General Relativity and Quantum Cosmology, False vacuum, Physics, Lattice (order), Quantum fluctuation, Liquid bubble, Semiclassical physics, Quantum electrodynamics, Bubble, Equations of motion, Quantum tunnelling
Funded by
UKRI| Black Hole Superradiance in Rotating Fluids
  • Funder: UK Research and Innovation (UKRI)
  • Project Code: EP/P00637X/1
  • Funding stream: EPSRC
Understanding the Origin of Cosmic Structure
  • Funder: European Commission (EC)
  • Project Code: 306478
  • Funding stream: FP7 | SP2 | ERC
46 references, page 1 of 4 [1] R. Bousso and J. Polchinski, Quantization of four form

constant, J. High Energy Phys. 06 (2000) 006. [2] L. Susskind, The anthropic landscape of string theory, in

University Press, Cambridge, England, 2007), pp. 247-266. [3] O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond,

with ultra-cold atoms, Europhys. Lett. 110, 56001 (2015). [4] O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond,

vacuum, J. Phys. B 50, 024003 (2017). [5] J. Braden, M. C. Johnson, H. V. Peiris, and S. Weinfurtner,

Phys. 07 (2018) 014. [6] J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes,

tive, Annu. Rev. Phys. Chem. 48, 545 (1997). [7] J. S. Langer, Theory of the condensation point, Ann. Phys.

(N.Y.) 41, 108 (1967); 281, 941 (2000). [8] J. S. Langer, Statistical theory of the decay of metastable

states, Ann. Phys. (N.Y.) 54, 258 (1969). [9] S. R. Coleman, The fate of the false vacuum: Semiclassical

theory, Phys. Rev. D 15, 2929 (1977); Erratum, Phys. Rev.

D 16, 1248(E) (1977). [10] C. G. Callan, Jr. and S. R. Coleman, Fate of the false vacuum.

II. first quantum corrections, Phys. Rev. D 16, 1762 (1977). [11] S. R. Coleman, V. Glaser, and A. Martin, Action minima

tions, Commun. Math. Phys. 58, 211 (1978). [12] K.-M. Lee and E. J. Weinberg, Tunneling without barriers,

Nucl. Phys. B267, 181 (1986). [13] C. L. Wainwright, CosmoTransitions: Computing cosmologi-

multiple fields, Comput. Phys. Commun. 183, 2006 (2012). [14] E. J. Weinberg, Classical Solutions in Quantum Field

46 references, page 1 of 4
Any information missing or wrong?Report an Issue