
We study quantum fidelity, the overlap between two ground states of a many-body system, focusing on the thermodynamic regime. We show how drop of fidelity near a critical point encodes universal information about a quantum phase transition. Our general scaling results are illustrated in the quantum Ising chain for which a remarkably simple expression for fidelity is found.
4 pages, 4 figures, rearranged a bit to improve presentation
Quantum Physics, Condensed Matter - Strongly Correlated Electrons, Statistical Mechanics (cond-mat.stat-mech), Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
Quantum Physics, Condensed Matter - Strongly Correlated Electrons, Statistical Mechanics (cond-mat.stat-mech), Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 99 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
