
Static packings of perfectly rigid particles are investigated theoretically and numerically. The problem of finding the contact forces in such packings is formulated mathematically. Letting the values of the contact forces define a vector in a high-dimensional space enable us to show that the set of all possible contact forces is convex, facilitating its numerical exploration. It is also found that the boundary of the set is connected with the presence of sliding contacts, suggesting that a stable packing should not have more than 2M-3N sliding contacts in two dimensions, where M is the number of contacts and N is the number of particles. These results were used to analyze packings generated in different ways by either molecular dynamics or contact dynamics simulations. The dimension of the set of possible forces and the number of sliding contacts agrees with the theoretical expectations. The indeterminacy of each component of the contact forces are found, as well as the an estimate for the diameter of the set of possible contact forces. We also show that contacts with high indeterminacy are located on force chains. The question of whether the simulation methods can represent a packing's memory of its formation is addressed.
12 pages, 13 figures, submitted to Phys Rev E
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
