Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2020 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scalar-field dark energy nonminimally and kinetically coupled to dark matter

Authors: Ryotaro Kase; Shinji Tsujikawa;

Scalar-field dark energy nonminimally and kinetically coupled to dark matter

Abstract

We provide a general framework for studying the dark energy cosmology in which a scalar field $��$ is nonminimally and kinetically coupled to Cold Dark Matter (CDM). The scalar-graviton sector is described by the action of Horndeski theories with the speed of gravitational waves equivalent to that of light, whereas CDM is treated as a perfect fluid given by a Schutz-Sorkin action. We consider two interacting Lagrangians of the forms $f_1(��,X)��_c (n_c)$ and $f_2 (n_c, ��,X) J_c^�� \partial_����$, where $X=-\partial^�� ��\partial_�� ��/2$, $��_c$ and $n_c$ are the energy density and number density of CDM respectively, and $J_c^��$ is a vector field related to the CDM four velocity. We derive the scalar perturbation equations of motion without choosing any special gauges and identify conditions for the absence of ghosts and Laplacian instabilities on scales deep inside the sound horizon. Applying a quasi-static approximation in a gauge-invariant manner, we also obtain the effective gravitational couplings felt by CDM and baryons for the modes relevant to the linear growth of large-scale structures. In particular, the $n_c$ dependence in the coupling $f_2$ gives rise to an interesting possibility for realizing the gravitational coupling with CDM weaker than the Newton gravitational constant $G$.

published version with corrections, 24 pages

Related Organizations
Keywords

High Energy Physics - Theory, High Energy Physics - Phenomenology, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Average
Top 10%
Green