publication . Article . Other literature type . 2019

New Semiclassical Picture of Vacuum Decay

Matthew C. Johnson; Hiranya V. Peiris; Jonathan Braden; Silke Weinfurtner; Andrew Pontzen;
Open Access
  • Published: 18 Jul 2019 Journal: Physical Review Letters, volume 123 (issn: 0031-9007, eissn: 1079-7114, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
We introduce a new picture of vacuum decay which, in contrast to existing semiclassical techniques, provides a real-time description and does not rely on classically forbidden tunneling paths. Using lattice simulations, we observe vacuum decay via bubble formation by generating realizations of vacuum fluctuations and evolving with the classical equations of motion. The decay rate obtained from an ensemble of simulations is in excellent agreement with existing techniques. Future applications include bubble correlation functions, fast decay rates, and decay of nonvacuum states.
Persistent Identifiers
Subjects
arXiv: High Energy Physics::Experiment
free text keywords: General Physics and Astronomy, Quantum electrodynamics, Equations of motion, False vacuum, Quantum tunnelling, Quantum fluctuation, Liquid bubble, Physics, Bubble, Semiclassical physics, Correlation function
Funded by
EC| COSMICDAWN
Project
COSMICDAWN
Understanding the Origin of Cosmic Structure
  • Funder: European Commission (EC)
  • Project Code: 306478
  • Funding stream: FP7 | SP2 | ERC
46 references, page 1 of 4

jbraden@cita.utoronto.ca [1] R. Bousso and J. Polchinski, Quantization of four form

constant, J. High Energy Phys. 06 (2000) 006. [2] L. Susskind, The anthropic landscape of string theory, in

University Press, Cambridge, England, 2007), pp. 247-266. [3] O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond,

with ultra-cold atoms, Europhys. Lett. 110, 56001 (2015). [4] O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond,

vacuum, J. Phys. B 50, 024003 (2017). [5] J. Braden, M. C. Johnson, H. V. Peiris, and S. Weinfurtner,

Phys. 07 (2018) 014. [6] J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes,

tive, Annu. Rev. Phys. Chem. 48, 545 (1997). [7] J. S. Langer, Theory of the condensation point, Ann. Phys.

(N.Y.) 41, 108 (1967); 281, 941 (2000). [8] J. S. Langer, Statistical theory of the decay of metastable

states, Ann. Phys. (N.Y.) 54, 258 (1969). [9] S. R. Coleman, The fate of the false vacuum: Semiclassical

theory, Phys. Rev. D 15, 2929 (1977); Erratum, Phys. Rev.

D 16, 1248(E) (1977). [10] C. G. Callan, Jr. and S. R. Coleman, Fate of the false vacuum.

II. first quantum corrections, Phys. Rev. D 16, 1762 (1977). [11] S. R. Coleman, V. Glaser, and A. Martin, Action minima

tions, Commun. Math. Phys. 58, 211 (1978). [12] K.-M. Lee and E. J. Weinberg, Tunneling without barriers,

Nucl. Phys. B267, 181 (1986). [13] C. L. Wainwright, CosmoTransitions: Computing cosmologi-

multiple fields, Comput. Phys. Commun. 183, 2006 (2012). [14] E. J. Weinberg, Classical Solutions in Quantum Field

46 references, page 1 of 4
Abstract
We introduce a new picture of vacuum decay which, in contrast to existing semiclassical techniques, provides a real-time description and does not rely on classically forbidden tunneling paths. Using lattice simulations, we observe vacuum decay via bubble formation by generating realizations of vacuum fluctuations and evolving with the classical equations of motion. The decay rate obtained from an ensemble of simulations is in excellent agreement with existing techniques. Future applications include bubble correlation functions, fast decay rates, and decay of nonvacuum states.
Persistent Identifiers
Subjects
arXiv: High Energy Physics::Experiment
free text keywords: General Physics and Astronomy, Quantum electrodynamics, Equations of motion, False vacuum, Quantum tunnelling, Quantum fluctuation, Liquid bubble, Physics, Bubble, Semiclassical physics, Correlation function
Funded by
EC| COSMICDAWN
Project
COSMICDAWN
Understanding the Origin of Cosmic Structure
  • Funder: European Commission (EC)
  • Project Code: 306478
  • Funding stream: FP7 | SP2 | ERC
46 references, page 1 of 4

jbraden@cita.utoronto.ca [1] R. Bousso and J. Polchinski, Quantization of four form

constant, J. High Energy Phys. 06 (2000) 006. [2] L. Susskind, The anthropic landscape of string theory, in

University Press, Cambridge, England, 2007), pp. 247-266. [3] O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond,

with ultra-cold atoms, Europhys. Lett. 110, 56001 (2015). [4] O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond,

vacuum, J. Phys. B 50, 024003 (2017). [5] J. Braden, M. C. Johnson, H. V. Peiris, and S. Weinfurtner,

Phys. 07 (2018) 014. [6] J. N. Onuchic, Z. Luthey-Schulten, and P. G. Wolynes,

tive, Annu. Rev. Phys. Chem. 48, 545 (1997). [7] J. S. Langer, Theory of the condensation point, Ann. Phys.

(N.Y.) 41, 108 (1967); 281, 941 (2000). [8] J. S. Langer, Statistical theory of the decay of metastable

states, Ann. Phys. (N.Y.) 54, 258 (1969). [9] S. R. Coleman, The fate of the false vacuum: Semiclassical

theory, Phys. Rev. D 15, 2929 (1977); Erratum, Phys. Rev.

D 16, 1248(E) (1977). [10] C. G. Callan, Jr. and S. R. Coleman, Fate of the false vacuum.

II. first quantum corrections, Phys. Rev. D 16, 1762 (1977). [11] S. R. Coleman, V. Glaser, and A. Martin, Action minima

tions, Commun. Math. Phys. 58, 211 (1978). [12] K.-M. Lee and E. J. Weinberg, Tunneling without barriers,

Nucl. Phys. B267, 181 (1986). [13] C. L. Wainwright, CosmoTransitions: Computing cosmologi-

multiple fields, Comput. Phys. Commun. 183, 2006 (2012). [14] E. J. Weinberg, Classical Solutions in Quantum Field

46 references, page 1 of 4
Any information missing or wrong?Report an Issue