publication . Article . Preprint . Other literature type . 2015

Critical point and scale setting in SU(3) plasma: An update

Olaf Kaczmarek; Thomas Neuhaus; Mikko Laine; H. Ohno; Anthony Francis;
Open Access English
  • Published: 05 May 2015 Journal: Physical Review D, volume 91, issue 9 (issn: 1550-7998, Copyright policy)
  • Publisher: American Physical Society
Comment: 12 pages. v2: clarifications and references added, published version
free text keywords: High Energy Physics - Lattice, High Energy Physics - Phenomenology, 530 Physics, Nuclear and High Energy Physics, ddc:530, Critical point (thermodynamics), Coupling, Lattice field theory, Critical phenomena, Statistical analysis, Plasma, Gauge theory, Continuum (design consultancy), Physics, Statistical physics
Funded by
Strong Interaction Supercomputing Training Network
  • Funder: European Commission (EC)
  • Project Code: 238353
  • Funding stream: FP7 | SP3 | PEOPLE
Study of Strongly Interacting Matter
  • Funder: European Commission (EC)
  • Project Code: 283286
  • Funding stream: FP7 | SP4 | INFRA
SNSF| Real-time observables in thermal field theory
  • Funder: Swiss National Science Foundation (SNSF)
  • Project Code: 200020_155935
  • Funding stream: Project funding | Project funding (Div. I-III)
34 references, page 1 of 3

[1] T. Umeda, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y. Maezawa and H. Ohno, Fixed Scale Approach to Equation of State in Lattice QCD, Phys. Rev. D 79 (2009) 051501 [0809.2842]. [OpenAIRE]

[2] H.B. Meyer, High-Precision Thermodynamics and Hagedorn Density of States, Phys. Rev. D 80 (2009) 051502 [0905.4229].

[3] Sz. Borsa´nyi, G. Endro¨di, Z. Fodor, S.D. Katz and K.K. Szabo´, Precision SU(3) lattice thermodynamics for a large temperature range, JHEP 07 (2012) 056 [1204.6184].

[4] M. Asakawa, T. Hatsuda, E. Itou, M. Kitazawa and H. Suzuki [FlowQCD Collaboration], Thermodynamics of SU(3) gauge theory from gradient flow on the lattice, Phys. Rev. D 90 (2014) 011501 [1312.7492].

[5] L. Giusti and M. Pepe, Equation of state of a relativistic theory from a moving frame, Phys. Rev. Lett. 113 (2014) 031601 [1403.0360].

[6] H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann and W. Soeldner, Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD, Phys. Rev. D 83 (2011) 034504 [1012.4963].

[7] A. Francis, O. Kaczmarek, M. Laine, M. Mu¨ller, T. Neuhaus and H. Ohno, Towards the continuum limit in transport coefficient computations, PoS LATTICE 2013 (2014) 453 [1311.3759].

[9] G. Cuniberti, E. De Micheli and G.A. Viano, Reconstructing the thermal Green functions at real times from those at imaginary times, Commun. Math. Phys. 216 (2001) 59 [cond-mat/0109175]. [OpenAIRE]

[10] Y. Burnier and M. Laine, Towards flavour diffusion coefficient and electrical conductivity without ultraviolet contamination, Eur. Phys. J. C 72 (2012) 1902 [1201.1994]. [OpenAIRE]

[11] J. Langelage, S. Lottini and O. Philipsen, Centre symmetric 3d effective actions for thermal SU(N) Yang-Mills from strong coupling series, JHEP 02 (2011) 057 [Erratum-ibid. 07 (2011) 014] [1010.0951]. [OpenAIRE]

[12] X. Cheng and E.T. Tomboulis, Critical couplings and string tensions via lattice matching of RG decimations, Phys. Rev. D 86 (2012) 074507 [1206.3816]. [OpenAIRE]

[13] R. Sommer, Scale setting in lattice QCD, PoS LATTICE 2013 (2014) 015 [1401.3270].

[14] R. Sommer, A New way to set the energy scale in lattice gauge theories and its applications to the static force and αs in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022].

[15] M. Lu¨scher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [Erratumibid. 03 (2014) 092] [1006.4518].

[16] S. Necco, Universality and scaling behavior of RG gauge actions, Nucl. Phys. B 683 (2004) 137 [hep-lat/0309017].

34 references, page 1 of 3
Any information missing or wrong?Report an Issue