11 references, page 1 of 2
[1] Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian, J.H., Pei, Y.Y., Yuan, M.L., Zhang, Y.L., Dai, F.H., Liu, Y., Wang, Q.M., Zheng, J.J., Xu, L., Holmes, E.C., Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China.
Nature 579, 265-269 (2020) [ 2] Zhou, P., Yang, W.L., Wang, X.G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273 (2020) [ 3] Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.L., Abiona, O., Graham, B.S., McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263 (2020) [ 4] Letko, M., Marzi, A., Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology 5: 562-569 (2020) [ 5] Aliyari, R., Ding, S.W. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev. 227, 176-18 (2009) [6 ] Umbach, J.L., Cullen, B.R. The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev. 23, 1151-1164 (2009) [ 7] Sadler, A.J., Williams, B.R. Interferon-inducible antiviral effectors. Nat Rev Immunol. 8, 559- 568 (2008) [8 ] Koshiba, T. Mitochondrial mediated antiviral immunity. Biochimica et Biophysica Acta. 1833, 225-232 (2013) [9] Berkhout, B. RNAi-mediated antiviral immunity in mammals. Curr Opin Virol. 32, 9-14.
(2018) [10] Snead, N.M., Wu, X., Li, A., Cui, Q., Sakurai, K., Burnett JC, Rossi JJ. Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants.
Nucleic Acids Research. 41, 6209-6221 (2013) [11] Snead, N.M., Rossi, J.J. RNA Interference Trigger Variants: Getting the Most Out of RNA for RNA Interference-Based Therapeutics. Nucleic Acid Therapeutics 22, 139-146 (2012) [12] Sun, X., Rogoff, H.A., Li, C.J. Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nature Biotechnology 26,1379-1382 (2008) [13] Bernard, M.A., Wang, L., Tachado, S.D. Dicer-Argonaute2 Complex in Continuous Fluorogenic Assays of RNA Interference Enzymes. Plos One 10, e0120614 (2015) [14] Kurzynska-Kokorniak, A. ,Pokornowska, M., Koralewska, N., Hoffmann, W., BienkowskaSzewczyk, K., Figlerowicz, M. Revealing a new activity of the human Dicer DUF283 domain in vitro. Sci. Reports article 23989 (2016) [15] Yoshida, S., Hasegawa, T., Suzuki, M., Sugeno N Baba, T., Takeda, A., Mochizuki, H., Nagai, Y., Aoki, M. Parkinson's disease-linked DNAJC13 mutation aggravates alpha-synucleininduced neurotoxicity through perturbation of endosomal trafficking. Hum Mol Genet. 27, 823-836 (2018) [16] Yu, Z., Chen, T., Li, X., Yang, M., Tang, S., Zhu, X., Gu, Y., Su, X., Xia, M., Li, W., Zhang, X., Wang, Q., Cao, X., Wang, J. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. Elife 5: e10087 (2016) [17] Tzimas, C., Michailidou, G., Arsenakis, M., Kieff, E., Mosialos, G., Hatzivassiliou, E.G.
Human ubiquitin specific protease 31 is a deubiquitinating enzyme implicated in activation of nuclear factor-kappaB. Cell Signal. 18, 83-92 (2006) [18] Cunningham, C.N., Baughman, J.M., Phu, L., Tea, J.S., Yu, C., Coons, M., Kirkpatrick, D.S., Bingol, B., Corn, J.E. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol. 17, 160-9 (2015) [19] Chan, J.F.W., Kok, K.H., Zhu, Z., Chu, H., To, K.K., Yuan, S., Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections 9, 221-236 (2020) [20] Takeuchi, O., Akira, S. Innate immunity to virus infection. Immunol. Rev. 227,75-86 (2009) [21] Iwasaki, A., Medzhitov, R. Regulation of adaptive immunity by the innate immune system.
Science. 327, 291-295 (2010) [22] Fujita, Y.T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev.
227, 54-65 (2009) [23] Sun, Q., Sun, L., Liu, H.H., Chen, X., Seth, R.B., Forman, J., Chen, Z.J. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24, 633-642 (2006) [24] Rajsbaum, R., Giraldo, M.I., Bharaj, P., Atkins, C., Xia, H., Rossi, S.L., Lee, B., Shi, P.Y., Freiberg, A.N. The host ubiquitin system in innate immunity and virus replication: proviral and antiviral functions of the host E3-ubiquitin ligase TRIM family. J. Immunol. 200 (1 Supplement) 50.3 (2018) [25] Blanco-Melo, D., Nilsson-Payant B.E., Liu W.C., Uhl S., Hoagland, D., Møller, R., Jordan, T.X. Oishi, K., Panis, M., Sachs, D., Wang, T.T., Schwartz, R.E.,Lim, J.K., Albrecht, R.A., tenOever, B.R. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell (under press) (2020) [26] Gordon, D.E., Jang, G.M., ….., Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature April (2020) [30] St-Jean, J.R., Jacomy, H., Desforges, M., Vabret, A., Freymuth, F., Talbot, P.J. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. Journal of virology 78, 8824- 8834 (2004).
[31] Pasquier, C., Agnel, S., Robichon, A. Transcriptome-wide-scale-predicted dsRNAs potentially involved in RNA homoeostasis are remarkably excluded from genes with no/very low expression in all developmental stages. RNA biology 17, 554-570 (2020). [OpenAIRE]
[32] Ghildiyal, M., Seitz, H., Horwich, M.D., Li, C., Du, T., Lee. S., Xu, J., Kittler, E.L., Zapp, M.L., Weng, Z., Zamore, P.D. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077-1081 (2008) [33] Czech, B., Malone, C.D., Zhou, R., Stark, A., Schlingeheyde, C., Dus, M., Perrimon, N., Kellis, M., Wohlschlegel, J.A., Sachidanandam, R., Hannon, G.J., Brennecke, J. An endogenous small interfering RNA pathway in Drosophila. Nature 453, 98-802 (2008) [34] Li, F., Zheng, Q., Ryvkin, P., Dragomir, I., Desai, Y., Aiyer, S., Valladares, O., Yang, J., Bambina, S., Sabin, L.R., Murray, J.I., Lamitina, T., Raj, A., Cherry, S., Wang, L.S., Gregory, B.D.
Global analysis of RNA secondary structure in two metazoans. Cell Rep. 1, 69-82 (2012).