
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Alzheimer disease (AD) is a fatal progressive disease and the most common form of dementia without effective treatments. Previous studies support that the disruption of endoplasmic reticulum Ca through overactivation of ryanodine receptors plays an important role in the pathogenesis of AD. Normalization of intracellular Ca homeostasis could be an effective strategy for AD therapies. Dantrolene, an antagonist of ryanodine receptors and an FDA-approved drug for clinical treatment of malignant hyperthermia and muscle spasms, exhibits neuroprotective effects in multiple models of neurodegenerative disorders. Recent preclinical studies consistently support the therapeutic effects of dantrolene in various types of AD animal models and were summarized in the current review.
Neuroprotective Agents, Treatment Outcome, Alzheimer Disease, Animals, Humans, Ryanodine Receptor Calcium Release Channel, Calcium Signaling, Dantrolene
Neuroprotective Agents, Treatment Outcome, Alzheimer Disease, Animals, Humans, Ryanodine Receptor Calcium Release Channel, Calcium Signaling, Dantrolene
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
