
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 29738370
Abstract: The advent of biologic therapy has enhanced our ability to augment disease in an increasingly targeted manner. The use of biologics in cardiovascular disease (CVD) has steadily increased over the past several decades. Much of the early data on biologics and CVD were derived from their use in rheumatologic populations. Atherosclerosis, myocardial infarction, and heart failure have been closely linked to the inflammatory response. Accordingly, cytokines such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 have been targeted. Noninflammatory mediators, such as proprotein convertase subtilisin kexin type 9 (PCSK9), have been selected for therapeutic intervention as well. Furthermore, RNA interference (RNAi) therapy has emerged and may serve as another targeted therapeutic mechanism. Herein, we will review the history, obstacles, and advances in using biologic therapy for CVD.
Biological Products, cardiovascular, Anti-Inflammatory Agents, Cardiovascular Agents, Biologics, Cardiotoxicity, RNAi Therapeutics, Treatment Outcome, inflammation, Cardiovascular Diseases, antibody, Liposomes, Animals, Cytokines, Humans, Inflammation Mediators, Proprotein Convertase 9, RNA, Small Interfering, Signal Transduction
Biological Products, cardiovascular, Anti-Inflammatory Agents, Cardiovascular Agents, Biologics, Cardiotoxicity, RNAi Therapeutics, Treatment Outcome, inflammation, Cardiovascular Diseases, antibody, Liposomes, Animals, Cytokines, Humans, Inflammation Mediators, Proprotein Convertase 9, RNA, Small Interfering, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
