Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The FASEB Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The FASEB Journal
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structural And Functional Characterization Of Ulvan Degrading Polysaccharide Lyase Enzymes

Authors: ThirumalaiSelvi Ulaganathan; Miroslaw Cygler; Ehud Banin; William Helbert;

Structural And Functional Characterization Of Ulvan Degrading Polysaccharide Lyase Enzymes

Abstract

Ulvans are the sulfated cell wall polysaccharide present in marine green algae. Ulvan polysaccharides are composed mainly of 3‐sulfated rhamnose, glucuronic acid, iduronic acid and xylose. The sulfation pattern in ulvan resemble glycosaminoglycans in vertebrates. The structural features of ulvan make it a good candidate for variety of industrial applications in agriculture, food, pharmaceutical, chemical, and biomaterials industries. Identification of ulvan‐degrading microorganism and the corresponding enzymes will increase the potential application of this highly abundant naturally occurring polysaccharide.Bacterial microbiomes associated with the green algae contain enzymes to degrade ulvan by a lytic β‐elimination mechanism. Genome sequencing projects lead to the identification of many such ulvan degrading enzymes from several bacteria Nonlabens ulvanivorans, Pseudoalteromonas sp. strain PLSV, Alteromonas sp. strain LOR and LTR. Using X‐ray crystallography and enzyme activity assays, we solved the structure and biochemically characterized three ulvan lyases, PLSV3936, LOR107 and NLR48. All three enzymes share very low sequence identity and act differentially on substrate.Despite their low sequence identity, PLSV3936 and LOR107 share the same 7‐bladed β propeller fold. However, the complex structure with the bound tetrasaccharide substrate reveals the difference in the active site and mode of cleavage. Whereas, NLR48 has a β jelly roll scaffold. Complex structure of NLR48 with tetrasaccharide substrate suggest that NLR48 appears to utilize lysine and tyrosine as catalytic residues and the substrate acidic group is neutralized by a glutamine residue. Our results expand the information about ulvan degrading enzymes to potentiate the use of ulvan polysaccharide.Support or Funding InformationThe financial support was provided by a grant from the Natural Science and Engineering Research Council of CanadaThis abstract is from the Experimental Biology 2018 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze