Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans

Authors: Karen J. Bame;

Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans

Abstract

Heparanases are endoglycosidases that cleave the heparan sulfate glycosaminoglycans from proteoglycan core proteins and degrade them to small oligosaccharides. Inside cells, these enzymes are important for the normal catabolism of heparan sulfate proteoglycans (HSPGs), generating glycosaminoglycan fragments that are then transported to lysosomes and completely degraded. When secreted, heparanases are thought to degrade basement membrane HSPGs at sites of injury or inflammation, allowing extravasion of immune cells into nonvascular spaces and releasing factors that regulate cell proliferation and angiogenesis. Heparanases have been described in a wide variety of tissues and cells, but because of difficulties in developing simple assays to follow activity, very little has been known about enzyme diversity until recently. Within the last 10 years, heparanases have been purified from platelets, placenta, and Chinese hamster ovary cells. Characterization of the enzymes suggests there may be a family of heparanase proteins with different substrate specificities and potential functions.

Keywords

Heparan Sulfate Proteoglycans, Glucuronidase, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
146
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!