Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carcinogenesisarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carcinogenesis
Article
Data sources: UnpayWall
Carcinogenesis
Article . 2000 . Peer-reviewed
Data sources: Crossref
Carcinogenesis
Article . 2000
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxyradicals and DNA damage

Authors: Lawrence J. Marnett;

Oxyradicals and DNA damage

Abstract

A major development of carcinogenesis research in the past 20 years has been the discovery of significant levels of DNA damage arising from endogenous cellular sources. Dramatic improvements in analytical chemistry have provided sensitive and specific methodology for identification and quantitation of DNA adducts. Application of these techniques to the analysis of nuclear DNA from human tissues has debunked the notion that the human genome is pristine in the absence of exposure to environmental carcinogens. Much endogenous DNA damage arises from intermediates of oxygen reduction that either attack the bases or the deoxyribosyl backbone of DNA. Alternatively, oxygen radicals can attack other cellular components such as lipids to generate reactive intermediates that couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations that are commonly observed in mutated oncogenes and tumor suppressor genes. Their mutagenicity is mitigated by repair via base excision and nucleotide excision pathways. The levels of oxidative DNA damage reported in many human tissues or in animal models of carcinogenesis exceed the levels of lesions induced by exposure to exogenous carcinogenic compounds. Thus, it seems likely that oxidative DNA damage is important in the etiology of many human cancers. This review highlights some of the major accomplishments in the study of oxidative DNA damage and its role in carcinogenesis. It also identifies controversies that need to be resolved. Unraveling the contributions to tumorigenesis of DNA damage from endogenous and exogenous sources represents a major challenge for the future.

Keywords

Mutagenicity Tests, DNA, Oxidants, Oxidative Stress, Neoplasms, Humans, Lipid Peroxidation, Reactive Oxygen Species, Biomarkers, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2K
Top 0.1%
Top 0.1%
Top 0.1%
bronze