Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Biotherapy & ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2009
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Biotherapy & Radiopharmaceuticals
Article . 2009 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Radionuclide Imaging of Tumor Angiogenesis

Authors: Dijkgraaf, I.; Boerman, O.C.;

Radionuclide Imaging of Tumor Angiogenesis

Abstract

Angiogenesis is a multistep process regulated by pro- and antiangiogenic factors. In order to grow and metastasize, tumors need a constant supply of oxygen and nutrients. For growth beyond 1-2 mm in size, tumors are dependent on angiogenesis. Inhibition of angiogenesis is a new cancer treatment strategy that is now widely investigated clinically. Researchers have begun to search for objective measures that indicate pharmacologic responses to antiangiogenic drugs. Therefore, there is a great interest in techniques to visualize angiogenesis in growing tumors noninvasively. Several markers have been described that are preferentially expressed on newly formed blood vessels in tumors (alpha(v)beta(3) integrin, vascular endothelial growth factor, and its receptor, prostate-specific membrane antigen) and in the extracellular matrix surrounding newly formed blood vessels (extra domain B of fibronectin, Tenascin-C, matrix metalloproteinases, and Robo-4). Several ligands targeting these markers have been tested as a radiotracer for imaging angiogenesis in tumors. The potential of some of these tracers, such as radiolabeled cyclic RGD peptides and radiolabeled anti-PSMA antibodies, has already been tested in cancer patients, while for markers such as Robo-4, the ligand has not yet been identified. In this review, an overview on the currently used nuclear imaging probes for noninvasive visualization of tumor angiogenesis is given.

Keywords

Receptors, Peptide, Angiogenesis Inhibitors, Mice, Fluorodeoxyglucose F18, Neoplasms, Animals, Humans, Neoplasm Metastasis, Receptors, Immunologic, NCMLS 2: Immune Regulation, Neovascularization, Pathologic, Indium Radioisotopes, Neoplasms, Experimental, ONCOL 5: Aetiology, screening and detection, Integrin alphaVbeta3, Magnetic Resonance Imaging, Matrix Metalloproteinases, Alternative Splicing, Receptors, Vascular Endothelial Growth Factor, ONCOL 3: Translational research, Positron-Emission Tomography, Endothelium, Vascular, Oligopeptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green
bronze