
We propose and develop a formalism to describe and constrain statistically anisotropic primordial perturbations. Starting from a decomposition of the primordial power spectrum in spherical harmonics, we find how the temperature fluctuations observed in the CMB sky are directly related to the coefficients in this harmonic expansion. Although the angular power spectrum does not discriminate between statistically isotropic and anisotropic perturbations, it is possible to define analogous quadratic estimators that are direct measures of statistical anisotropy. As a simple illustration of our formalism we test for the existence of a preferred direction in the primordial perturbations using full-sky CMB maps. We do not find significant evidence supporting the existence of a dipole component in the primordial spectrum.
26 pages, 5 double figures. Uses RevTeX4
Physics, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Physics, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
