Actions
  • shareshare
  • link
  • cite
  • add
add
auto_awesome_motion View all 8 versions
Publication . Article . Preprint . 2017

Localization of massless Dirac particles via spatial modulations of the Fermi velocity

Charles A. Downing; Mikhail E. Portnoi;
Open Access   English  
Published: 09 Aug 2017 Journal: Journal of Physics: Condensed Matter, volume 29, issue 31, page 315,301 (issn: 0953-8984, eissn: 1361-648X, Copyright policy )
Country: France
Abstract
The electrons found in Dirac materials are notorious for being difficult to manipulate due to the Klein phenomenon and absence of backscattering. Here we investigate how spatial modulations of the Fermi velocity in two-dimensional Dirac materials can give rise to localization effects, with either full (zero-dimensional) confinement or partial (one-dimensional) confinement possible depending on the geometry of the velocity modulation. We present several exactly solvable models illustrating the nature of the bound states which arise, revealing how the gradient of the Fermi velocity is crucial for determining fundamental properties of the bound states such as the zero-point energy. We discuss the implications for guiding electronic waves in few-mode waveguides formed by Fermi velocity modulation.
Comment: 9 pages, 6 figures
Subjects by Vocabulary

Microsoft Academic Graph classification: Quantum mechanics Graphene law.invention law Fermi energy Electron Physics Dirac (software) Massless particle Bound state Quantum dot Modulation (music)

ACM Computing Classification System: ComputingMilieux_MISCELLANEOUS

Subjects

Condensed Matter Physics, General Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Quantum Physics, [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]

68 references, page 1 of 7

[1] O. Klein, Z. Phys. 53, 157 (1929).

[2] T. O. Wehling, A. M. Black-Scha er, and A. V. Balatsky, Adv. Phys. 63, 1 (2014).

[3] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Phys. 2, 620 (2006). [OpenAIRE]

[4] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys. 3, 192 (2007).

[5] A. De Martino, L. DellAnna, and R. Egger, Phys. Rev. Lett. 98, 066802 (2007).

[6] J. H. Bardarson, M. Titov, and P. W. Brouwer, Phys. Rev. Lett. 102, 226803 (2009).

[7] R. R. Hartmann, N. J. Robinson, and M. E. Portnoi, Phys. Rev. B 81, 245431 (2010).

[8] A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, F. Nori, Phys. Rep. 503, 77 (2011).

[9] G. Giavaras and F. Nori, Phys. Rev. B 85, 165446 (2012).

[10] V. V. Zalipaev, D. N. Maksimov, C. M. Linton, F. V. Kusmartsev, Phys. Lett. A 377, 216 (2013).

Funded by
EC| NOTEDEV
Project
NOTEDEV
Novel Type of Terahertz Devices
  • Funder: European Commission (EC)
  • Project Code: 607521
  • Funding stream: FP7 | SP3 | PEOPLE
,
EC| CANTOR
Project
CANTOR
Carbon-nanotube-based terahertz-to-optics rectenna
  • Funder: European Commission (EC)
  • Project Code: 612285
  • Funding stream: FP7 | SP3 | PEOPLE
,
EC| INTERNOM
Project
INTERNOM
Interaction phenomena in novel materials
  • Funder: European Commission (EC)
  • Project Code: 612624
  • Funding stream: FP7 | SP3 | PEOPLE
,
EC| CoExAN
Project
CoExAN
Collective Excitations in Advanced Nanostructures
  • Funder: European Commission (EC)
  • Project Code: 644076
  • Funding stream: H2020 | MSCA-RISE
Validated by funder