
In this paper we study the inverse problem of determining the residual stress in Man's model using tomographic data. Theoretically, the tomographic data is obtained at zero approximation of geometrical optics for Man's residual stress model. For compressional waves, the inverse problem is equivalent to the problem of inverting the longitudinal ray transform of a symmetric tensor field. For shear waves, the inverse problem, after the linearization, leads to another integral geometry operator which is called the mixed ray transform. Under some restrictions on coefficients, we are able to prove the uniqueness results in these two cases.
Mathematics - Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)
Mathematics - Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
