
handle: 20.500.14243/162512 , 11573/337138
The definition of relative accelerations and strains among a set of comoving particles is studied in connection with the geometric properties of the frame adapted to a "fiducial observer." We find that a relativistically complete and correct definition of strains must take into account the transport law of the chosen spatial triad along the observer's congruence. We use special congruences of (accelerated) test particles in some familiar spacetimes to elucidate such a point. The celebrated idea of Szekeres' compass of inertia, arising when studying geodesic deviation among a set of free-falling particles, is here generalized to the case of accelerated particles. In doing so we have naturally contributed to the theory of relativistic gravity gradiometer. Moreover, our analysis was made in an observer-dependent form, a fact that would be very useful when thinking about general relativistic tests on space stations orbiting compact objects like black holes and also in other interesting gravitational situations.
25 pages, 7 figures; published version
relativita' generale, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
relativita' generale, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
