Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rapid trend towards larger and more moisture-limited trees in Central-European temperate forests

Authors: Václav Treml; Jan Tumajer; Filip Oulehle; Jan Altman; Jiří Doležal; Monika Vejpustková; Miloš Rydval; +16 Authors

Rapid trend towards larger and more moisture-limited trees in Central-European temperate forests

Abstract

Abstract Tree stems represent a long-lived biomass compartment for atmospheric carbon sequestration. While terrestrial biosphere models predict rising carbon sequestration in forests, direct observations of tree growth are inconclusive due to varying standardization procedures of tree-ring series and complex factors influencing stem growth such as moisture and nutrient deficits and anthropogenic carbon and nitrogen fertilization. The mismatch between tree-ring-based observations, repeated inventories at permanent plots, and predictions of biospheric models represents a significant knowledge gap limiting forecasting of future forest growth. Using the novel approach free of tree-ring standardization trials and focusing on even-aged trees sampled from uneven-aged forest stands, we present a robust comparison of tree stem diameter changes in temperate forests between 1990 and 2015 along environmental gradients in Central Europe. The stem sizes of four out of five species showed significant enlargement while also partly increasing stem growth limitation due to moisture availability. The largest increase in stem diameter was recorded for late succession species on fertile sites. By contrast, the stem size of early-succession species on dry and nutrient-poor sites remained unaltered. Stems of mature trees in present-day forests are, on average, 8% thicker than their counterparts in 1990 consistent with trends predicted by terrestrial biosphere models. We demonstrated that, despite increasing drought limitation, temperate tree species enlarged their stems. Viewed in conjunction with older permanent plot data, Central-European temperate forests exhibited almost half century of continuous stem enlargement, potentially impacting forest functioning in terms of size-sensitive characteristics such as susceptibility to drought and disturbances.

Related Organizations
Keywords

Environmental sciences, productivity, Science, Physics, QC1-999, Q, soil nutrients, GE1-350, drought, growth trends, climatic limitation, Environmental technology. Sanitary engineering, TD1-1066

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold