Actions
shareshare link cite add Please grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
See an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Publication . Article . 1939
ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY
Cole, Kenneth S.; Curtis, Howard J.;
Cole, Kenneth S.; Curtis, Howard J.;
Open Access English
Published: 20 May 1939 Journal: The Journal of General Physiology, volume 22, issue 5, pages 649-670 (issn: 0022-1295, eissn: 1540-7748,
Copyright policy )

Publisher: The Rockefeller University Press
Abstract
Alternating current impedance measurements have been made over a wide frequency range on the giant axon from the stellar nerve of the squid, Loligo pealii, during the passage of a nerve impulse. The transverse impedance was measured between narrow electrodes on either side of the axon with a Wheatstone bridge having an amplifier and cathode ray oscillograph for detector. When the bridge was balanced, the resting axon gave a narrow line on the oscillograph screen as a sweep circuit moved the spot across. As an impulse passed between impedance electrodes after the axon had been stimulated at one end, the oscillograph line first broadened into a band, indicating a bridge unbalance, and then narrowed down to balance during recovery. From measurements made during the passage of the impulse and appropriate analysis, it was found that the membrane phase angle was unchanged, the membrane capacity decreased about 2 per cent, while the membrane conductance fell from a resting value of 1000 ohm cm.2 to an average of 25 ohm cm.2 The onset of the resistance change occurs somewhat after the start of the monophasic action potential, but coincides quite closely with the point of inflection on the rising phase, where the membrane current reverses in direction, corresponding to a decrease in the membrane electromotive force. This E.M.F. and the conductance are closely associated properties of the membrane, and their sudden changes constitute, or are due to, the activity which is responsible for the all-or-none law and the initiation and propagation of the nerve impulse. These results correspond to those previously found for Nitella and lead us to expect similar phenomena in other nerve fibers.
Subjects by Vocabulary
Microsoft Academic Graph classification: Neuroscience Electrical impedance Wheatstone bridge law.invention law Axon medicine.anatomical_structure medicine Condensed matter physics Ohm Squid giant axon Oscillograph Impulse (physics) Materials science Giant axon
Subjects
Article, Physiology
Article, Physiology
Microsoft Academic Graph classification: Neuroscience Electrical impedance Wheatstone bridge law.invention law Axon medicine.anatomical_structure medicine Condensed matter physics Ohm Squid giant axon Oscillograph Impulse (physics) Materials science Giant axon
Related Organizations
- Marine Biological Laboratory United States
See an issue? Give us feedback
Download fromView all 3 sources
Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.