
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>We demonstrate the application of an algorithmic trading strategy based upon the recently developed dynamic mode decomposition (DMD) on portfolios of financial data. The method is capable of characterizing complex dynamical systems, in this case financial market dynamics, in an equation-free manner by decomposing the state of the system into low-rank terms whose temporal coefficients in time are known. By extracting key temporal coherent structures (portfolios) in its sampling window, it provides a regression to a best fit linear dynamical system, allowing for a predictive assessment of the market dynamics and informing an investment strategy. The data-driven analytics capitalizes on stock market patterns, either real or perceived, to inform buy/sell/hold investment decisions. Critical to the method is an associated learning algorithm that optimizes the sampling and prediction windows of the algorithm by discovering trading hot-spots. The underlying mathematical structure of the algorithms is rooted in methods from nonlinear dynamical systems and shows that the decomposition is an effective mathematical tool for data-driven discovery of market patterns.
18 pages, 7 figures. arXiv admin note: text overlap with arXiv:1506.00564
FOS: Economics and business, Quantitative Finance - Computational Finance, Computational Finance (q-fin.CP)
FOS: Economics and business, Quantitative Finance - Computational Finance, Computational Finance (q-fin.CP)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 128 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
