Downloads provided by UsageCounts
pmid: 28436314
handle: 10284/10036 , http://hdl.handle.net/10284/10036
Drug-induced liver injury (DILI) is a major safety issue during drug development, as well as the most common cause for the withdrawal of drugs from the pharmaceutical market. The identification of DILI biomarkers is a labor-intensive area. Conventional biomarkers are not specific and often only appear at significant levels when liver damage is substantial. Therefore, new biomarkers for early identification of hepatotoxicity during the drug discovery process are needed, thus resulting in lower development costs and safer drugs. In this sense, metabolomics has been increasingly playing an important role in the discovery of biomarkers of liver damage, although the characterization of the mechanisms of toxicity induced by xenobiotics remains a huge challenge. These new-generation biomarkers will offer obvious benefits for the pharmaceutical industry, regulatory agencies, as well as a personalized clinical follow-up of patients, upon validation and translation into clinical practice or approval for routine use. This review describes the current status of the metabolomics applied to the early diagnosis and prognosis of DILI and in the discovery of new potential urinary biomarkers of liver injury.
Drug-induced liver injury, Hepatotoxicity, Urinary biomarkers, Prognosis, Xenobiotics, Metabolomics, Humans, Conventional biomarkers, Chemical and Drug Induced Liver Injury, Biomarkers
Drug-induced liver injury, Hepatotoxicity, Urinary biomarkers, Prognosis, Xenobiotics, Metabolomics, Humans, Conventional biomarkers, Chemical and Drug Induced Liver Injury, Biomarkers
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 2 | |
| downloads | 3 |

Views provided by UsageCounts
Downloads provided by UsageCounts