
We present an analytic extension of the unsigned Stirling numbers of the first kind that is in a certain sense unique in its coincidence with the Stirling polynomials. We examine and compare our extension to previous extensions of (signed) Stirling numbers of the first kind given by Butzer et al. (2007, J. Difference Equ. Appl., 13) and of the unsigned numbers given by Adamchik (1997, J. Comput. Appl. Math., 79). We also see a connection to the Riemann zeta function.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
