
A complex unit gain graph is a simple graph in which each orientation of an edge is given a complex number with modulus 1 and its inverse is assigned to the opposite orientation of the edge. In this article, first we establish bounds for the eigenvalues of the complex unit gain graphs. Then we study some of the properties of the adjacency matrix of complex unit gain graph in connection with the characteristic and the permanental polynomials. Then we establish spectral properties of the adjacency matrices of complex unit gain graphs. In particular, using Perron-Frobenius theory, we establish a characterization for bipartite graphs in terms of the set of eigenvalues of gain graph and the set of eigenvalues of the underlying graph. Also, we derive an equivalent condition on the gain so that the eigenvalues of the gain graph and the eigenvalues of the underlying graph are the same.
14 pages, 2 figures
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), 05C50, 05C22
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), 05C50, 05C22
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
