
For a graph G, we define its perturbed Laplacian matrix as D−A(G) where A(G) is the adjacency matrix of G and D is an arbitrary diagonal matrix. Both the Laplacian matrix and the negative of the adjacency matrix are special instances of the perturbed Laplacian. Several well-known results, contained in the classical work of Fiedler and in more recent contributions of other authors are shown to be true, with suitable modifications, for the perturbed Laplacian. An appropriate generalization of the monotonicity property of a Fiedler vector for a tree is obtained. Some of the results are applied to interval graphs.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
