<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We previously developed a deep learning-based web service (IsletNet) for an automated counting of isolated pancreatic islets. The neural network training is limited by the absent consensus on the ground truth annotations. Here, we present a platform (IsletSwipe) for an exchange of graphical opinions among experts to facilitate the consensus formation. The platform consists of a web interface and a mobile application. In a small pilot study, we demonstrate the functionalities and the use case scenarios of the platform. Nine experts from three centers validated the drawing tools, tested precision and consistency of the expert contour drawing, and evaluated user experience. Eight experts from two centers proceeded to evaluate additional images to demonstrate the following two use case scenarios. The Validation scenario involves an automated selection of images and islets for the expert scrutiny. It is scalable (more experts, images, and islets may readily be added) and can be applied to independent validation of islet contours from various sources. The Inquiry scenario serves the ground truth generating expert in seeking assistance from peers to achieve consensus on challenging cases during the preparation for IsletNet training. This scenario is limited to a small number of manually selected images and islets. The experts gained an opportunity to influence IsletNet training and to compare other experts' opinions with their own. The ground truth-generating expert obtained feedback for future IsletNet training. IsletSwipe is a suitable tool for the consensus finding. Experts from additional centers are welcome to participate.
islet transplantation, Islets of Langerhans Transplantation, deep learning, Pilot Projects, mobile application, human islets, image annotation, islet graft quality control, expert opinion exchange, islet counting, Islets of Langerhans, Consensus building, user experience, consensus building, islet isolation, Neural Networks, Computer, ground truth, Expert Testimony, Research Article
islet transplantation, Islets of Langerhans Transplantation, deep learning, Pilot Projects, mobile application, human islets, image annotation, islet graft quality control, expert opinion exchange, islet counting, Islets of Langerhans, Consensus building, user experience, consensus building, islet isolation, Neural Networks, Computer, ground truth, Expert Testimony, Research Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |