Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1996 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 1996
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 1996
Data sources: Hal
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Re-expression of the Mannose 6-Phosphate Receptors in Receptor-deficient Fibroblasts

Authors: Munier-Lehmann, Hélène; Mauxion, F.; Bauer, U.; Lobel, Peter; Hoflack, Bernard;

Re-expression of the Mannose 6-Phosphate Receptors in Receptor-deficient Fibroblasts

Abstract

We have previously generated primary embryonic fibroblasts lacking either the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (MPR) or the cation-dependent MPR, two trans-membrane proteins that bind the mannose 6-phosphate (Man-6-P) recognition marker on soluble lysosomal enzymes (Ludwig, T., Munier-Lehmann, H., Bauer, U., Hollinshead, M., Ovitt, C., Lobel, P., and Hoflack, B.(1994) EMBO J. 13, 3430-3437). These two cell types partially missort phosphorylated lysosomal enzymes. Using two-dimensional gel electrophoresis, we show here that they secrete, in a large part, different phosphorylated ligands. In order to better understand the sorting function of the MPRs, we have re-expressed each MPR in MPR-negative fibroblasts. We show that the MPRs have similar capacities for transporting the bulk of the newly synthesized lysosomal enzymes and that they target individual ligands with various efficiencies. However, high levels of one MPR do not fully compensate for the absence of the other, demonstrating that the two MPRs have complementary targeting functions, perhaps by recognizing different features on lysosomal enzymes. The analysis of the phosphorylated oligosaccharides shows that the ligands missorted in the absence of the cation-dependent MPR are slightly but significantly depleted in oligosaccharides with two Man-6-P residues, when compared with those missorted in the absence of the cation-independent MPR. While these results could explain some differences between the structure and the sorting function of the two MPRs, they strongly suggest that the reason why cells express two different but related MPRs is to maintain an efficient Man-6-P-dependent targeting process that could be potentially regulated by MPR expression.

Keywords

Gene Expression, Oligosaccharides, 3T3 Cells, Fibroblasts, Transfection, beta-Galactosidase, Cathepsin D, Endocytosis, Receptor, IGF Type 2, beta-N-Acetylhexosaminidases, [SDV] Life Sciences [q-bio], Mice, Liver, [SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology, Animals, Cattle, Phosphorylation, Lysosomes, [SDV.MP] Life Sciences [q-bio]/Microbiology and Parasitology, [SDV.BC] Life Sciences [q-bio]/Cellular Biology, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
gold