Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Sports Medicine
Article . 2012 . Peer-reviewed
Data sources: Crossref
International Journal of Sports Medicine
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anatomy and Physiology of Hamstring Injury

Authors: T. Kumazaki; Tatsuo Sakai; Y. Ehara;

Anatomy and Physiology of Hamstring Injury

Abstract

The hamstring muscles were analyzed anatomically and physiologically to clarify the specific reasons for the incidence of muscle strain of the hamstrings. For the anatomical study, hamstring muscles of 13 embalmed cadavers were dissected. For the physiological study, the knee flexor torque and surface electromyographic (EMG) signals were measured during isometric contraction of hamstring muscles in 10 healthy adults. The biceps femoris muscle long head (BF-L) and semimembranosus muscle (SM) had hemi-pennate architecture and their fiber length per total muscle length (FL/TML) was smaller than that of semtendinosus muscle (ST) and biceps femoris muscle short head (BF-S) with other architecture. The decrease of total muscle length per fiber length (ΔTML/FL) was larger in BF-L and SM than in ST and BF-S. The EMG activities at 0° of knee angle were at maximal compared with other knee angles and were of similar level in BF-L, in SM and in ST, whereas they were considerably smaller in BF-S. The EMG at 0° of knee angle activity per physiological cross-sectional area (PCSA) was about 1.6 times greater in BF-L than in SM. These results indicate the highest risk of muscle strain was in BF-L followed by SM.

Related Organizations
Keywords

Male, Young Adult, Japan, Thigh, Isometric Contraction, Cadaver, Sprains and Strains, Humans, Female, Neurofeedback, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze