Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao HAL Descartesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2003
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal de Physique IV (Proceedings)
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The stability of arsenic fixation on minerai traps

Authors: Garrido, Francis; Dictor, Marie Christine; Bodénan, Françoise; Morin, G.; Baranger, P.;

The stability of arsenic fixation on minerai traps

Abstract

Metal mobility in soils and sediments is dependent not only on the well-known physico-chemical parameters, but also on much less well characterised biological parameters. Iron minerals, ubiquitous in the soil mineral matrix, provide preferential supports for trapping heavy metals and metalloids. This work consisted in studying factors favouring the short-term mobility of arsenic by analogy with the biogeochemical reactions occurring in the soils. Incubation experiments with hydrated iron hydroxides spiked with arsenic(V) carried out in vitro in an anoxic environment in the presence of Fe-reducing bacteria (FR) revealed a chemical mechanism (phosphate/arsenic exchange) that causes rapid solution of the arsenic and a biological reducing mechanism in the solubilisation of the iron and arsenic. In the first instance, the bacteria develop and reduce the Fe(III) to Fe(II), which is solubilised; no solubilisation of arsenic was observed during this phase. Next, the concentration of dissolved iron diminishes and the As(V) is reduced to As(III). Some samples showed the presence of vivianite Fe 3 (PO 4 ) 2 .8H 2 O, which results from the precipitation of soluble iron with the phosphate ions present in the culture medium.

Keywords

[SDU.STU] Sciences of the Universe [physics]/Earth Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!