
Due to its location and climate, Antarctica offers unique conditions for long-period observations across a broad wavelength regime, where important diagnostic lines for molecules and ions can be found, that are essential to understand the chemical properties of the interstellar medium. In addition to the natural benefits of the site, new technologies, resulting from astrophotonics, may allow miniaturised instruments, that are easier to winterise and advanced filters to further reduce the background in the infrared.
4 pages, to be published in EAS Publications Series, Vol. 40, Proc. of 3rd ARENA conference
FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)
FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
