publication . Conference object . Article . 2019

Summer drought stress: differential effects on cane anatomy and non-structural carbohydrate content in overwintering Cabernet Sauvignon and Syrah vines

Rachele Falchi; Elisa Petrussa; Marco Zancani; Valentino Casolo; Paola Beraldo; Andrea Nardini; Paolo Sivilotti; Alberto Calderan; Jose Carlos Herrera; Enrico Peterlunger; ...
Open Access English
  • Published: 01 Apr 2019
Grapevines store non-structural carbohydrates (NSC) during late summer to sustain plant development at the onset of the following spring’s growth. Starch is the main stored carbohydrate, found in the wood-ray parenchyma of roots and canes. Although the relationship between hydraulic and plant photosynthetic performance is well-recognized, little research has been done on the long-term effects of drought in grapevines adopting different strategies to cope with water stress (i.e. isohydric and anisohydric). We performed our study by exposing two different grape cultivars (Syrah and Cabernet Sauvignon) to a short but severe drought stress, at two stages of the grow...
Persistent Identifiers
Medical Subject Headings: food and beverages
free text keywords: [SDV.BV]Life Sciences [q-bio]/Vegetal Biology, Grapevine; drought; carbohydrates, Cane, biology.organism_classification, biology, Horticulture, Bark, visual_art.visual_art_medium, visual_art, Overwintering, Cultivar, Carbohydrate, Starch, chemistry.chemical_compound, chemistry, Growing season, Photosynthesis, lcsh:Microbiology, lcsh:QR1-502, lcsh:Physiology, lcsh:QP1-981, lcsh:Zoology, lcsh:QL1-991

1. B.P. Holzapfel, J.P. Smith, S.K. Field, W.J. Hardie. Horticultural reviews. (Edited by Janick J, 2010)

10. M.M. Chaves, O. Zarrouk, R. Francisco, J.M. Costa, T. Santos, A.P. Regalado, M.L. Rodrigues, C.M. Lopes. Ann Bot-London. 105(5), 661-676 (2010)

11. G.R. Cramer, S.C. Van Sluyter, D.W. Hopper, D. Pascovici, T. Keighley, P.A. Haynes. BMC Plant Biol. 13, 49 (2013)

12. J. Martinez-Vilalta, N. Garcia-Forner. Plant Cell Environ. 40(6), 962-976 (2017)

13. A.G. Quentin, E.A. Pinkard, M.G. Ryan, D.T. Tissue, L.S. Baggett, H.D. Adams, P. Maillard, J. Marchand, S.M. Landhausser, A. Lacointe et al. Tree Physiol. 35(11), 1146-1165 (2015)

14. H. Medrano, J.M. Escalona, J. Bota, J. Gulìas, J. Flexas. Ann Bot-London. 89(7), 895-905 (2002)

15. J. Cifre, J. Bota, J.M. Escalona, H. Medrano, J. Flexas. Agr Ecosyst Environ. 106(2), 159-170 (2005)

16. H.A. Mooney, B.L. Gartner. The Biology of Vines (Cambridge University Press, 1992).

17. V. Zufferey, F. Murisier, P. Vivin, S. Belcher, F. Lorenzini, J. Spring, O. Viret. Vitis. 51(3), 103- 110 (2012)

18. U. Hochberg, A. Degu, A. Fait, S. Rachmilevitch. Physiol Plant. 147(4):443-452 (2013)

19. H.R. Schultz. Plant Cell Environ. 26(8):1393- 1405 (2003)

20. F Tardieu and T. Simonneau. J Exp Bot. 49:419- 432 (1998)

21. M.M. Chaves, J.S. Pereira, J. Maroco, M.L. Rodrigues, C.P.P. Ricardo, M.L. Osório, I.

22. P. Trifilò, V. Casolo, F. Raimondo, E. Petrussa, F. Boscutti, M.A. Lo Gullo, A. Nardini. Plant Physiol Biochem. 120:232-241 (2017)

Any information missing or wrong?Report an Issue