
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1049/cvi2.12048
handle: 10251/189374 , 11380/1227178
AbstractConvolutional neural networks (CNNs) have been broadly employed in dermoscopic image analysis, mainly as a result of the large amount of data gathered by the International Skin Imaging Collaboration (ISIC). As in many other medical imaging domains, state‐of‐the‐art methods take advantage of architectures developed for other tasks, frequently assuming full transferability between enormous sets of natural images (e.g. ImageNet) and dermoscopic images, which is not always the case. A comprehensive analysis on the effectiveness of state‐of‐the‐art deep learning techniques when applied to dermoscopic image analysis is provided. To achieve this goal, the authors consider several CNNs architectures and analyse how their performance is affected by the size of the network, image resolution, data augmentation process, amount of available data, and model calibration. Moreover, taking advantage of the analysis performed, a novel ensemble method to further increase the classification accuracy is designed. The proposed solution achieved the third best result in the 2019 official ISIC challenge, with an accuracy of 0.593.
QA76.75-76.765, Computer applications to medicine. Medical informatics, R858-859.7, Computer software
QA76.75-76.765, Computer applications to medicine. Medical informatics, R858-859.7, Computer software
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 144 | |
downloads | 265 |