Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 1997 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

NMR study of the galactomannans of Trichophyton mentagrophytes and Trichophyton rubrum

Authors: John S. Blake; Kyoko Ikuta; Shigeo Suzuki; Robert D. Nelson; Nobuyuki Shibata; Yoshio Okawa; Kanehiko Hisamichi; +2 Authors

NMR study of the galactomannans of Trichophyton mentagrophytes and Trichophyton rubrum

Abstract

Around 90% of chronic dermatophyte infections are caused by the fungi Trichophyton mentagrophytes and Trichophyton rubrum. One of the causes of the chronic infection resides in the immunosuppressive effects of the cell-wall components of these organisms. Therefore we have attempted to identify the chemical structure of galactomannan, one of the major cell-wall components. The cell-wall polysaccharides secreted by T. mentagrophytes and T. rubrum were isolated from the culture medium and fractionated into three subfractions by DEAE-Sephadex chromatography. Analysis of each subfraction by NMR indicated that there are two kinds of polysaccharides present, i.e. mannan and galactomannan. The mannan has a linear backbone consisting of α1,6-linked mannose units, with α1,2-linked mannose units as side chains. The core mannan moiety of the galactomannan was analysed by a sequential NMR assignment method after removing the galactofuranose units by acid treatment. The result indicates that the mannan moiety has a linear repeating structure of α1,2-linked mannotetraose units connected by an α1,6 linkage. The H-1 signals of the two intermediary α1,2-linked mannoses of the tetraose unit showed a significant upfield shift (ΔΔ = 0.05-0.08 p.p.m.), due to the steric effect of an α1,6-linked mannose unit. The attachment point of the galactofuranose units was determined at C-3 of the core mannan by the assignment of the downfield-shifted 13C signals of the galactomannan compared with those of the acid-modified product. In these galactomannans there were no polygalactofuranosyl chains which have been found in Penicillium charlesii and Aspergillus fumigatus.

Related Organizations
Keywords

Mannans, Magnetic Resonance Spectroscopy, Carbohydrate Sequence, Trichophyton, Molecular Sequence Data, Carbohydrate Conformation, Galactose

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
bronze