
AbstractIdeal drug carriers feature a high loading capacity to minimize the exposure of patients with excessive, inactive carrier materials. The highest imaginable loading capacity could be achieved by nanocarriers, which are assembled from the therapeutic cargo molecules themselves. Here, we describe peptide nucleic acid (PNA)-based zirconium (Zr) coordination nanoparticles which exhibit very high PNA loading of $$>\,94\%$$ > 94 % w/w. This metal-organic hybrid nanomaterial class extends the enormous compound space of coordination polymers towards bioactive oligonucleotide linkers. The architecture of single- or double-stranded PNAs was systematically varied to identify design criteria for the coordination driven self-assembly with Zr(IV) nodes at room temperature. Aromatic carboxylic acid functions, serving as Lewis bases, and a two-step synthesis process with preformation of $$Zr_{6} O_{4} (OH)_{4}$$ Z r 6 O 4 ( O H ) 4 turned out to be decisive for successful nanoparticle assembly. Confocal laser scanning microscopy confirmed that the PNA-Zr nanoparticles are readily internalized by cells. PNA-Zr nanoparticles, coated with a cationic lipopeptide, successfully delivered an antisense PNA sequence for splicing correction of the $$\beta$$ β -globin intron mutation IVS2-705 into a functional reporter cell line and mediated splice-switching via interaction with the endogenous mRNA splicing machinery. The presented PNA-Zr nanoparticles represent a bioactive platform with high design flexibility and extraordinary PNA loading capacity, where the nucleic acid constitutes an integral part of the material, instead of being loaded into passive delivery systems.
Peptide Nucleic Acids, Organic–inorganic nanostructures, Science, Q, R, 301208 Pharmazeutische Technologie, Article, Nanostructures, DNA and RNA, Nucleic Acids, Drug delivery, Medicine, Humans, Nanoparticles, Zirconium, 301208 Pharmaceutical technology
Peptide Nucleic Acids, Organic–inorganic nanostructures, Science, Q, R, 301208 Pharmazeutische Technologie, Article, Nanostructures, DNA and RNA, Nucleic Acids, Drug delivery, Medicine, Humans, Nanoparticles, Zirconium, 301208 Pharmaceutical technology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
