Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phosphate and the parathyroid

Authors: Tally Naveh-Many; Justin Silver;

Phosphate and the parathyroid

Abstract

The phosphate (Pi) retention in patients with chronic kidney disease leads to secondary hyperparathyroidism (2HPT). 2HPT is the physiological response of the parathyroid not only to Pi retention but also to decreased synthesis of 1,25(OH)(2) vitamin D, and the attendant hypocalcemia. 2HPT is characterized by increased PTH synthesis, secretion, and parathyroid cell proliferation. Extracellular fluid (ECF) Ca(2+) is recognized by the parathyroid calcium receptor and a small decrease in the ECF Ca(2+) results in relaxation of the calcium receptor and allows the unrestrained secretion and synthesis of PTH and in the longer term, parathyroid cell proliferation. Both 1,25(OH)(2) vitamin D and fibroblast growth factor 23 inhibit PTH gene expression and secretion. Secondary hyperparathyroidism can initially be controlled by a single therapeutic intervention, such as a Pi-restricted diet, a calcimimetic, or an active vitamin D analog. In this review we discuss the mechanisms whereby Pi regulates the parathyroid. Pi has a direct effect on the parathyroid which requires intact parathyroid tissue architecture. The effect of Pi, as of Ca(2+), on PTH gene expression is post-transcriptional and involves the regulated interaction of parathyroid cytosolic proteins to a defined cis acting sequence in the PTH mRNA. Changes in serum Ca(2+) or Pi regulate the activity of trans acting interacting proteins in the parathyroid, which alters their binding to a defined 26 nucleotide cis acting instability sequence in the PTH mRNA 3'-untranslated region. The trans factors are either stabilizing or destabilizing factors and their regulated binding to the PTH cis acting element determines the PTH mRNA half-life. The responses of the parathyroid to changes in serum Pi are now being revealed but the sensing mechanisms remain a mystery.

Related Organizations
Keywords

calcium, RNA Stability, Phosphates, Parathyroid Glands, Gene Expression Regulation, FGF23, Nephrology, Parathyroid Hormone, AUF1, Humans, 1,25(OH)2 vitamin D, KSRP, PTH

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 1%
hybrid