
This paper describes an application of neural networks and simulated annealing (SA) algorithm to model and optimize the gas tungsten arc welding (GTAW) process. The relationships between welding process parameters and weld pool features are established based on neural networks. In this study, the counter-propagation network (CPN) is selected to model the GTAW process due to the CPN equipped with good learning ability. An SA optimization algorithm is then applied to the CPN for searching for the welding process parameters with optimal weld pool features. Experimental results have shown that GTAW performance can be enhanced by using this approach.
Computer Integrated Vision, Gas Tungsten Arc Welding Process
Computer Integrated Vision, Gas Tungsten Arc Welding Process
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
