Actions
  • shareshare
  • link
  • cite
  • add
add
auto_awesome_motion View all 5 versions
Publication . Article . 2018

Rare and Nonexistent Nitrosyls: Periodic Trends and Relativistic Effects in Ruthenium and Osmium Porphyrin-Based {MNO}7 Complexes

Taye B. Demissie; Jeanet Conradie; Hugo Vazquez-Lima; Kenneth Ruud; Abhik Ghosh;
Open Access
Published: 01 Sep 2018 Journal: ACS Omega, volume 3, pages 10,513-10,516 (issn: 2470-1343, eissn: 2470-1343, Copyright policy )
Publisher: American Chemical Society (ACS)
Country: Norway
Abstract
The following article: Demissie, T.B., Conradie, J., Vazquez-Lima, H., Ruud, K. & Ghosh, A. (2018). Rare and Nonexistent Nitrosyls: Periodic Trends and Relativistic Effects in Ruthenium and Osmium Porphyrin-Based {MNO}7 Complexes. ACS Omega, 3(9), 10513-10516 can be accessed at https://doi.org/10.1021/acsomega.8b01434. c. Licensed CC BY-NC-ND 4.0. Relativistic and nonrelativistic density functional theory calculations were used to investigate rare or nonexistent ruthenium and osmium analogues of nitrosylhemes. Strong ligand field effects and, to a lesser degree, relativistic effects were found to destabilize {RuNO}7 porphyrins relative to their {FeNO}7 analogues. Substantially stronger relativistic effects account for the even greater instability and/or nonexistence of {OsNO}7 porphyrin derivatives.
Subjects by Vocabulary

Microsoft Academic Graph classification: Coordination complex chemistry.chemical_classification chemistry Osmium chemistry.chemical_element Ligand field theory Molecule Ruthenium Crystallography Porphyrin chemistry.chemical_compound Relativistic quantum chemistry Density functional theory

Library of Congress Subject Headings: lcsh:Chemistry lcsh:QD1-999

Subjects

General Chemical Engineering, General Chemistry, VDP::Mathematics and natural science: 400::Chemistry: 440, VDP::Matematikk og Naturvitenskap: 400::Kjemi: 440, Coordination compounds, Materials science, Molecular structure, Physical and chemical properties, Potential energy, Quantum mechanical methods, Article

48 references, page 1 of 5

Dasent W. E.Nonexistent Compounds: Compounds of Low Stability; Marcel Dekker: New York, 1965; pp 1–182.

Dasent W. E.Non-existent compounds. J. Chem. Educ.1963, 40, 130–134. 10.1021/ed040p130. [OpenAIRE] [DOI]

Hoffmann R.Why Think Up New Molecules?. Am. Sci.2008, 96, 372–374. 10.1511/2008.74.372. [OpenAIRE] [DOI]

The Smallest Biomolecules: Diatomics and their Interactions with Heme Proteins; Ghosh A., Ed.; Elsevier, 2008; pp 1–603.

Hunt A. P.; Lehnert N.Heme-Nitrosyls: Electronic Structure Implications for Function in Biology. Acc. Chem. Res.2015, 48, 2117–2125. 10.1021/acs.accounts.5b00167.26114618 [OpenAIRE] [PubMed] [DOI]

Richter-Addo G. B.; Legzdins P.Metal Nitrosyls; Oxford University Press: New York, 1992; pp. 353–384

Wyllie G. R. A.; Scheidt W. R.Solid-State Structures of Metalloporphyrin NOx Compounds. Chem. Rev.2002, 102, 1067–1090. 10.1021/cr000080p.11942787 [OpenAIRE] [PubMed] [DOI]

Ghosh A.Metalloporphyrin–NO Bonding: Building Bridges with Organometallic Chemistry. Acc. Chem. Res.2005, 38, 943–954. 10.1021/ar050121+.16359166 [OpenAIRE] [PubMed] [DOI]

Ghosh A.; Hopmann K. H.; Conradie J.Electronic Structure Calculations: Transition Metal–NO Complexes in Computational Inorganic and Bioinorganic Chemistry, Solomon E. I.; Scott R. A.; King R. B., Eds.; John Wiley & Sons Ltd: Chichester, UK, 2009; pp. 389– 410.

Mingos D. M. P.Historical Introduction to Nitrosyl Complexes; Structure and Bonding; Springer, 2014; Vol. 153, pp 1–44.

Funded by
EC| EPOS
Project
EPOS
European Plate Observing System
  • Funder: European Commission (EC)
  • Project Code: 262229
  • Funding stream: FP7 | SP4 | INFRA
Related to Research communities
EPOS
moresidebar