publication . Article . 2018

Synthesis and Molecular Structure of a Copper Octaiodocorrole

Ivar K. Thomassen; Laura J. McCormick; Abhik Ghosh;
Open Access
  • Published: 09 May 2018 Journal: ACS Omega, volume 3, pages 5,106-5,110 (issn: 2470-1343, eissn: 2470-1343, Copyright policy)
  • Publisher: American Chemical Society (ACS)
Source at Although rather delicate on account of their propensity to undergo deiodination, β-octaiodoporphyrinoids are of considerable interest as potential precursors to novel β-octasubstituted macrocycles. Presented herein are early results of our efforts to synthesize β-octaiodocorrole derivatives. Oxidative condensation of 3,4-diiodopyrrole and aromatic aldehydes failed to yield free-base octaiodocorroles. Treatment of copper meso-tris(p-cyanophenyl)corrole with N-iodosuccinimide and trifluoroacetic acid over several hours, however, yielded the desired β-octaiodinated product in ∼22% yield. Single-crystal X-ray stru...
Persistent Identifiers
free text keywords: Article, VDP::Mathematics and natural science: 400::Chemistry: 440, VDP::Matematikk og Naturvitenskap: 400::Kjemi: 440, Chemical Engineering, Materials Engineering, Condensation, Early results, Chemistry, Dichloromethane, chemistry.chemical_compound, Corrole, Copper, chemistry.chemical_element, Trifluoroacetic acid, Molecule, Electronic effect, Combinatorial chemistry, lcsh:Chemistry, lcsh:QD1-999
Funded by
European Plate Observing System
  • Funder: European Commission (EC)
  • Project Code: 262229
  • Funding stream: FP7 | SP4 | INFRA
The molecular mechanism of the reversible switch between cell proliferation and migration. The regulatory function of the ERK pathway and ERK pathway scaffold RACK1
  • Funder: European Commission (EC)
  • Project Code: 231086
  • Funding stream: FP7 | SP3 | PEOPLE
34 references, page 1 of 3

Dolphin D.; Traylor T. G.; Xie L. Y.Polyhaloporphyrins: Unusual Ligands for Metals and Metal-Catalyzed Oxidations. Acc. Chem. Res.1998, 27, 31–41.

Ghosh A.; Halvorsen I.; Nilsen H. J.; Steene E.; Wondimagegn T.; Lie R.; van Caemelbecke E.; Guo N.; Ou Z.; Kadish K. M.Electrochemistry of Nickel and Copper β-Octahalogeno-meso-tetraarylporphyrins. Evidence for Important Role Played by Saddling-Induced Metal(d x2-y2)-Porphyrin(“a 2u”) Orbital Interactions. J. Phys. Chem. B 2001, 105, 8120–8124.

Wasbotten I. H.; Wondimagegn T.; Ghosh A.Electronic Absorption, Resonance Raman, and Electrochemical Studies of Planar and Saddled Copper(III) Meso-Triarylcorroles. Highly Substituent-Sensitive Soret Bands as a Distinctive Feature of High-Valent Transition Metal Corroles. J. Am. Chem. Soc.2002, 124, 8104–8116. 10.1021/ja0113697.12095356 [OpenAIRE] [PubMed] [DOI]

Medforth C. J.; Smith K. M.The synthesis and solution conformation of dodecaphenylporphyrin. Tetrahedron Lett.1990, 31, 5583–5586. 10.1016/S0040-4039(00)97902-4. [DOI]

Liu C.; Chen Q. Y.Fluoroalkylation of Porphyrins: A Facile Synthesis of Trifluoromethylated Porphyrins by a Palladium-Catalyzed Cross-Coupling Reaction. Eur. J. Org. Chem.2005, 2005, 3680–3686. 10.1002/ejoc.200500027. [OpenAIRE] [DOI]

Thomassen I. K.; Vazquez-Lima H.; Gagnon K. J.; Ghosh A.Octaiodoporphyrin. Inorg. Chem.2015, 54, 11493–11497. 10.1021/acs.inorgchem.5b02127.26571017 [OpenAIRE] [PubMed] [DOI]

Vestfrid J.; Botoshansky M.; Palmer J. H.; Durrell A. C.; Gray H. B.; Gross Z.Iodinated Aluminum(III) Corroles with Long-Lived Triplet Excited States. J. Am. Chem. Soc.2011, 133, 12899–12901. 10.1021/ja202692b.21793523 [OpenAIRE] [PubMed] [DOI]

Vestfrid J.; Goldberg I.; Gross Z.Tuning the Photophysical and Redox Properties of Metallocorroles by Iodination. Inorg. Chem.2014, 53, 10536–10542. 10.1021/ic501585a.25244591 [OpenAIRE] [PubMed] [DOI]

Sudhakar K.; Mahammed A.; Fridman N.; Gross Z.Iodinated cobalt corroles. J. Porphyrins Phthalocyanines 2017, 21, 900–907. 10.1142/S108842461750095X. [DOI]

Soll M.; Sudhakar K.; Fridman N.; Müller A.; Röder B.; Gross Z.One-Pot Conversion of Fluorophores to Phosphorophores. Org. Lett.2016, 18, 5840–5843. 10.1021/acs.orglett.6b02877.27934504 [OpenAIRE] [PubMed] [DOI]

Orłowski R.; Gryko D.; Gryko D. T.Synthesis of Corroles and Their Heteroanalogs. Chem. Rev.2017, 117, 3102–3137. 10.1021/acs.chemrev.6b00434.27813401 [OpenAIRE] [PubMed] [DOI]

Barata J. F. B.; Neves M. G. P. M. S.; Faustino A. F.; ToméA. C.; Cavaleiro J. A. S.Strategies for Corrole Functionalization. Chem. Rev.2017, 117, 3192–3253. 10.1021/acs.chemrev.6b00476.28222602 [OpenAIRE] [PubMed] [DOI]

Ghosh A.Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem. Rev.2017, 117, 3798–3881. 10.1021/acs.chemrev.6b00590.28191934 [OpenAIRE] [PubMed] [DOI]

Rieke R. D.Preparation of Organometallic Compounds from Highly Reactive Metal Powders. Science 1989, 246, 1260–1264. 10.1126/science.246.4935.1260.17832221 [OpenAIRE] [PubMed] [DOI]

Orazi O. O.; Corral A.; Bertorello H. E.N-Iodohydantoins. II. Iodinations with 1,3-Diiodo-5,5-dimethylhydantoin. J. Org. Chem.1965, 30, 1101–1104. 10.1021/jo01015a036.14288447 [OpenAIRE] [PubMed] [DOI]

34 references, page 1 of 3
Any information missing or wrong?Report an Issue