Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Medicinal...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Medicinal Chemistry
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design, Synthesis, and Biological Evaluation of Aminoindazole Derivatives as Highly Selective Covalent Inhibitors of Wild-Type and Gatekeeper Mutant FGFR4

Authors: Min Shao; Xiaojuan Chen; Fang Yang; Xiaojuan Song; Yang Zhou; Qianmeng Lin; Ying Fu; +7 Authors

Design, Synthesis, and Biological Evaluation of Aminoindazole Derivatives as Highly Selective Covalent Inhibitors of Wild-Type and Gatekeeper Mutant FGFR4

Abstract

Aberrant FGF19/FGFR4 signaling has been shown to be an oncogenic driver of growth and survival in human hepatocellular carcinoma (HCC) with several pan-FGFR inhibitors and FGFR4-selective inhibitors currently being evaluated in the clinic. However, FGFR4 gatekeeper mutation induced acquired resistance remains an unmet clinical challenge for HCC treatment. Thus, a series of aminoindazole derivatives were designed and synthesized as new irreversible inhibitors of wild-type and gatekeeper mutant FGFR4. One representative compound (7v) exhibited excellent potency against FGFR4, FGFR4V550L, and FGFR4V550M with nanomolar activity in both the biochemical and cellular assays while sparing FGFR1/2/3. While compound 7v demonstrated modest in vivo antitumor efficacy in nude mice bearing the Huh-7 xenograft model consistent with its unfavorable pharmacokinetic properties, it provides a promising new starting point for future drug discovery combating FGFR4 gatekeeper mediated resistance in HCC patients.

Related Organizations
Keywords

Carcinoma, Hepatocellular, Liver Neoplasms, Mice, Nude, Fibroblast Growth Factors, Mice, Cell Line, Tumor, Animals, Humans, Receptor, Fibroblast Growth Factor, Type 4, Protein Kinase Inhibitors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!