Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

cyan green phosphor lu2m al4si o12 ce3 for high quality led lamp tunable photoluminescence properties and enhanced thermal stability

Authors: Yunan Zhou; Weidong Zhuang; Yunsheng Hu; Ronghui Liu; Huibing Xu; Mingyue Chen; Yuanhong Liu; +3 Authors

cyan green phosphor lu2m al4si o12 ce3 for high quality led lamp tunable photoluminescence properties and enhanced thermal stability

Abstract

High-quality white light-emitting diodes (w-LEDs) are mainly determined by conversion phosphors and the enhancement of cyan component that dominates the high color rendering index. New phosphors (Lu2M)(Al4Si)O12:Ce3+ (M = Mg, Ca, Sr and Ba), showing a cyan-green emission, have been achieved via the co-substitution of Lu3+-Al3+ by M2+-Si4+ pair in Lu3Al5O12:Ce3+ to compensate for the lack of cyan region and avoid using multiple phosphors. The excitation bands of (Lu2M)(Al4Si)O12:Ce3+ (M = Mg, Ca, Sr and Ba) show a red-shift from 434 to 445 nm which is attributed to the larger centroid shift and crystal field splitting. The enhanced structural rigidity associated with the accommodation of larger M2+ leads to a decreasing Stokes shift and the corresponding blue-shift (533 → 511 nm) in emission spectra, along with an improvement in thermal stability (keeping ∼93% at 150 °C). The cyan-green phosphor Lu2BaAl4SiO12:Ce3+ enables to fabricate a superhigh color rendering w-LED ( Ra = 96.6), verifying its superiority and application prospect in high-quality solid-state lightings.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
146
Top 1%
Top 10%
Top 1%
bronze