Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical Chemistry
Article . 2012
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near- and Supercritical Water as a Diameter Manipulation and Surface Roughening Agent in Fused Silica Capillaries

Authors: Pavel Karásek; Josef Planeta; Michal Roth;

Near- and Supercritical Water as a Diameter Manipulation and Surface Roughening Agent in Fused Silica Capillaries

Abstract

The prospects of near- and supercritical water for treatment of the inner surfaces of fused silica capillaries have been tested employing an in-lab-assembled apparatus. Unlike all other agents used for the purpose, water cannot introduce any undesirable heteroatoms to the treated surface. Theoretical background for this work comes from the well-known fact that water near its critical point can solubilize silica. The results show that depending on the temperature, water flow rate, flow mode, and exposure time, high-temperature water has wide-ranging effects on both the surface roughness and the internal diameter profile along the length of the treated capillary. By judicious selection of the operating conditions, tapered capillaries of various profiles for applications in electromigration techniques can be prepared with relatively high reproducibility. The water-treated fused silica capillaries with uniform internal diameter appear to be useful for preparation of monolithic silica capillary columns.

Country
Czech Republic
Related Organizations
Subjects by Vocabulary

Microsoft Academic Graph classification: Capillary action Chemistry Water flow Nanotechnology Electromigration Supercritical fluid Solubilization Critical point (thermodynamics) Surface roughening Surface roughness Composite material

Keywords

surface treatment, supercritical water, Analytical Chemistry, fused silica capillary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Average
Top 10%
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.