Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Royal Society of Edinburgh Section A Mathematics
Article . 2008 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rings of power series in the binomial polynomials

Authors: Todorka Nedeva;

Rings of power series in the binomial polynomials

Abstract

The study of the ring of all formal series $a_{0}+a_{1}\binom{x}{1}+a_{2} \binom{x}{2}+\cdots$ with integer coefficients, denoted by $\mathbb{Z}[\hspace{-1.6pt}[\binom{x}{1},\binom{x}{2},\dots]\hspace{-1.6pt}]$ , or $\mathbb{Z}[\hspace{-1.6pt}[\binom{x}{n}]\hspace{-1.6pt}]_{n\geq0}$ for short, is motivated by the elementary number theoretical properties of the binomial coefficients. The binomial polynomials as well as the binomial coefficients and their generalizations can be found in different branches of mathematics, e.g. in algebra, analysis, combinatorics and in topology. The question of finding the remainder when dividing $\binom{n}{k}$ by a prime (Lucas's 1878 theorem) leads to base- $p$ expansions in the binomial coefficients and the consideration of integer-valued polynomials with rational coefficients. And although the study of these polynomials dates back to the seventeenth century, the study of this set as a ring began in 1936 with Skolem. More generally, the bijective correspondence between the set of functions defined on the set of non-negative integers and the series $a_{0}+a_{1}\binom{x}{1}+a_{2}\binom{x}{2}+\cdots$ is used by Mahler in the field of $p$ -adic analysis and naturally leads to the expansion of Skolem's approach and the definition of $\mathbb{Z}[\hspace{-1.6pt}[\binom{x}{1},\binom{x}{2},\dots]\hspace{-1.6pt}]$ or in fact of $R[\hspace{-1.6pt}[\binom{x}{1},\binom{x}{2},\dots]\hspace{-1.6pt}]$ (with $R$ any ring). Iwasawa used such series in connection with the $p$ -adic $L$ -functions but without considering the ring.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!