Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Fluid Mec...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Fluid Mechanics
Article . 1987 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The influence of a peripheral layer of different viscosity on peristaltic pumping with Newtonian fluids

Authors: Stanley Corrsin; Nan Q. Lu; James G. Brasseur;

The influence of a peripheral layer of different viscosity on peristaltic pumping with Newtonian fluids

Abstract

The analysis by Shapiro et al. (1969) of a two-dimensional peristaltic pump at small Reynolds number and with long wavelengths is extended to include a Newtonian peripheral layer adjacent to the wall to simulate the effect of a coating in physiological flows. An earlier analysis by Shukla et al. (1980) violates mass conservation because of an incorrect deduction of the interface shape. We present a detailed analysis of the effect of the peripheral layer on the fluid motions, the pumping characteristics, and the phenomena of reflux and trapping. For prescribed wall motion, a peripheral layer more viscous than the inner fluid improves pumping performance, while a less-viscous outer layer degrades performance. Even a very thin peripheral layer may substantially reduce pumping if the viscosity in this layer is very low relative to the inner region. The effects of the peripheral layer on reflux and trapping depend on the conditions which are held fixed while making the comparison. However, the general trend with decreasing peripheral-layer viscosity is towards an overall decrease in trapping, a decrease in reflux with fixed total volume flow rate, but an increase in reflux with fixed pressure head.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!