Actions
  • shareshare
  • link
  • cite
  • add
add
auto_awesome_motion View all 5 versions
Publication . Part of book or chapter of book . 2012

Sur une question d'Erdös et Schinzel

Gérald Tenenbaum;
Open Access
French
Published: 05 Mar 2012
Publisher: HAL CCSD
Country: France
Abstract

document différent de la version publiée: de nombreuses erreurs typographiques introduites après l'envoi des épreuves ont été corrigées.; Let F(n) denote a polynomial with integer coefficients and define H_F(x,y,z) to be the number of integers not exceeding x for which F(n) has at least one divisor d such that y

Subjects by Vocabulary

Microsoft Academic Graph classification: Combinatorics Mathematics

Subjects

sieve, largest prime factor, polynomial values, divisors in an interval, Chebyshev problem, 11N32, [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT], [MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]

16 references, page 1 of 2

[5] P. Erd˝os, On the greatest prime factor of f (k), J. London Math. Soc. 27 (1952), 379-384.

[6] P. Erd˝os et A. Schinzel, On the greatest prime factor of kx=1 f (k), Acta Arith. 55, no. 2, 191-200.

[7] H. Halberstam et H.-E. Richert, Sieve Methods, Academic Press, London, NewYork, San Francisco (1974).

[8] R.R. Hall et G. Tenenbaum, Divisors, Cambridge Tracts no 90, Cambridge University Press (1988).

[9] C. Hooley, On the greatest prime factor of a quadratic polynomial, Acta Math. 117 (1967), 2-16. [OpenAIRE]

[10] C. Hooley, Applications of sieve methods to the theory of numbers, Cambridge Tracts no 70, Cambridge University Press (1976).

[11] E. Landau, Einfu¨hrung in die elementa¨re und analytische Theorie der algebraischen Zahlen, Teubner, Leipzig (1927) ; r´eimpression : Chelsea, New York (1949).

[12] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Menlo Park, London, Don Mills (1970).

[13] H. Maier et G. Tenenbaum, On the set of divisors of an integer, Invent. Math. 76 (1984), 121-128. [OpenAIRE]

[14] A. A. Markov, U¨ber die Primteiler der Zahlen von der Form 1 + 4x2, Bull. Acad. Sci. St. Petersburg, 3 (1895), 55-59.

Download fromView all 3 sources
lock_open
https://hal.archives-ouvertes....
Part of book or chapter of book
Providers: UnpayWall
moresidebar