Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Signal Processingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Signal Processing
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2025
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL - CNAM
Article . 2025
Data sources: HAL - CNAM
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
Signal Processing
Article . 2025 . Peer-reviewed
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Single atom convolutional matching pursuit: Theoretical framework and application to Lamb waves based structural health monitoring

Authors: Rodriguez, Sebastian; Rébillat, Marc; Paunikar, Shweta; Margerit, Pierre; Monteiro, E.; Chinesta, Francisco; Mechbal, Nazih;

Single atom convolutional matching pursuit: Theoretical framework and application to Lamb waves based structural health monitoring

Abstract

Structural Health Monitoring (SHM) aims to monitor in real time the health state of engineering structures. For thin structures, Lamb Waves (LW) are very efficient for SHM purposes. A bonded piezoelectric transducer (PZT) emits LW in the structure in the form of a short tone burst. This initial wave packet (IWP) propagates in the structure and interacts with its boundaries and discontinuities and with eventual damages generating additional wave packets. The main issues with LW based SHM are that at least two LW modes are simultaneously excited and that those modes are dispersive. Matching Pursuit Method (MPM), which consists of approximating a signal as a sum of different delayed and scaled atoms taken from an a priori known learning dictionary, seems very appealing in such a context, however is limited to nondispersive signals and relies on a priori known dictionary. An improved version of MPM called the Single Atom Convolutional Matching Pursuit method (SACMPM), which addresses the dispersion phenomena by decomposing a measured signal as delayed and dispersed atoms and limits the learning dictionary to only one atom, is proposed here. Its performances are illustrated when dealing with numerical and experimental signals as well as its usage for damage detection. Although the signal approximation method proposed in this paper finds an original application in the context of SHM, this method remains completely general and can be easily applied to any signal processing problem.

Country
France
Keywords

Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Lamb waves, Structural health monitoring, Informatique: Traitement du signal et de l'image, Single atom dictionary, [INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, [SPI] Engineering Sciences [physics], Matching pursuit, Convolutional matching pursuit, Sciences de l'ingénieur, Computer Science - Computational Engineering, Finance, and Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 28
    download downloads 12
  • 28
    views
    12
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
28
12
Green
hybrid
Funded by