Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Refrigeration
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2024
License: CC BY
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical modelling of a single-compression multi-temperature ejector-supported R744 refrigeration unit for last mile delivery

Authors: Fabris F.; Bodys J.; Marinetti S.; Minetto S.; Smolka J.; Rossetti A.;

Numerical modelling of a single-compression multi-temperature ejector-supported R744 refrigeration unit for last mile delivery

Abstract

A novel R744 vapor-compression refrigeration system has been developed to meet the cooling needs of a medium-size refrigerated truck at two temperature levels: 4-5 kW for medium-temperature (MT) refrigeration at 0°C and 1-2 kW for low-temperature (LT) refrigeration at -20°C. This system is designed for transporting chilled and frozen goods efficiently during last-mile deliveries in urban areas. The key innovation of this system lies in its single compression stage with two different evaporation levels. Firstly, the unit incorporates an MT ejector to enhance energy efficiency by reducing the compressor pressure ratio. Furthermore, an LT ejector is employed to allow providing LT cooling with a single-stage compressor by pre-compressing vapor before it enters the compressor, avoiding excessive compression ratios. This extends the LT operational range with a single stage of compression from 34°C to 40°C ambient temperature. When the ambient temperature is not sufficient to sustain the ejector cycle, the system can switch to a back-pressure cycle. A numerical model of this refrigeration system has been developed to evaluate its steady-state and dynamic performance in both back-pressure and ejector configurations. For a specific cooling effect production (3.8 kW in MT, 1.1 kW in LT operation), the ejector cycle increases the COP by 25.8% for MT and 42.0% for LT operation compared to the back-pressure cycle. However, the back-pressure cycle offers greater flexibility in cooling power production, ranging from -32.8% to +8.2% for MT and -8.9% to +82.5% for LT, making it useful for pulldown and part-load operations.

Country
Italy
Keywords

Multi-temperature transport, Ejector, Refrigeration, Refrigerated transport, Carbon Dioxide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid