publication . Preprint . Article . 1997

Statistical Mechanics and Black Hole Thermodynamics

Steven Carlip;
Open Access English
  • Published: 07 Feb 1997
Black holes are thermodynamic objects, but despite recent progress, the ultimate statistical mechanical origin of black hole temperature and entropy remains mysterious. Here I summarize an approach in which the entropy is viewed as arising from ``would-be pure gauge'' degrees of freedom that become dynamical at the horizon. For the (2+1)-dimensional black hole, these degrees of freedom can be counted, and yield the correct Bekenstein-Hawking entropy; the corresponding problem in 3+1 dimensions remains open.
Persistent Identifiers
arXiv: General Relativity and Quantum CosmologyAstrophysics::High Energy Astrophysical Phenomena
free text keywords: General Relativity and Quantum Cosmology, Black hole, Physics, Gauge (firearms), Horizon, Black hole thermodynamics, Entropy (statistical thermodynamics), Theoretical physics, Statistical mechanics
23 references, page 1 of 2

1. J. D. Bekenstein, Phys. Rev. D7 (1973) 2333.

2. S. W. Hawking, Nature 248 (1974) 30.

3. See, for example, A. Strominger and C. Vafa, Phys. Lett. B379 (1996) 99; G. Horowitz and A. Strominger, Phys. Rev. Lett. 77 (1996) 2368; C. Callan and J. Maldacena, Nucl. Phys. B475 (1996) 645.

4. A. P. Balachandran, L. Chandar, and A. Momen, Nucl. Phys. B461 (1996) 581; “Edge States in Canonical Gravity,” Syracuse preprint SU-4240-610 (1995), gr-qc/9506006. [OpenAIRE]

5. S. Carlip, Phys. Rev. D51 (1995) 632.

6. S. Carlip, to appear in Phys. Rev. D55 (1997).

7. M. Ban˜ados and A. Gomberoff, “Some Remarks on Carlip's Derivation of the 2+1 Black Hole Entropy,” gr-qc/9611044.

8. M. Ban˜ados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849; M. Ban˜ados, M. Henneaux, C. Teitelboim, and J. Zanelli, Phys. Rev. D48 (1993) 1506.

9. T. Regge and C. Teitelboim, Ann. Phys. 88 (1974) 286.

10. J. E. Nelson and T. Regge, Nucl. Phys. B328 (1989) 190; Commun. Math. Phys. 141 (1991) 211.

11. J. E. Nelson, T. Regge, and F. Zertuche, Nucl. Phys. B339 (1990) 516.

12. M. Berger and D. Ebin, J. Diff. Geom. 3 (1969) 379.

13. J. W. York, Ann. Inst. Henri Poincar´e A21 (1974) 319.

14. S. Carlip, M. Clements, S. DellaPietra, and V. DellaPietra, Commun. Math. Phys. 127 (1990) 253.

15. E. Witten, Commun. Math. Phys. 144 (1992) 189.

23 references, page 1 of 2
Any information missing or wrong?Report an Issue