Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Physics Barrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Physics B
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Physics B
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 1997
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Massive branes

Authors: Yolanda Lozano; Tomás Ortín; Eric Bergshoeff;
Abstract

We investigate the effective worldvolume theories of branes in a background given by (the bosonic sector of) 10-dimensional massive IIA supergravity (``massive branes'') and their M-theoretic origin. In the case of the solitonic 5-brane of type IIA superstring theory the construction of the Wess-Zumino term in the worldvolume action requires a dualization of the massive Neveu-Schwarz/Neveu-Schwarz target space 2-form field. We find that, in general, the effective worldvolume theory of massive branes contains new worldvolume fields that are absent in the massless case, i.e. when the mass parameter m of massive IIA supergravity is set to zero. We show how these new worldvolume fields can be introduced in a systematic way. In particular, we find new couplings between the massive solitonic 5-brane and the target space background, involving an additional worldvolume 1-form and 6-form. These new couplings have implications for the anomalous creation of branes. In particular, when a massive solitonic 5-brane passes through a D8-brane a stretched D6-brane is created. Similarly, in M-theory we find that when an M5-brane passes through an M9-brane a stretched Kaluza-Klein monopole is created. Pairs of massive branes of type IIA string theory can be viewed as the direct and double dimensional reduction of a single ``massive M-brane'' whose worldvolume theory is described by a gauged sigma model.

Latex file, 78 pages, 1 eps figure. Typos corrected. Version to be published in Nuclear Physics B

Keywords

DYNAMICS, High Energy Physics - Theory, DIMENSIONS, world-volume fields, FOS: Physical sciences, String and superstring theories in gravitational theory, String and superstring theories; other extended objects (e.g., branes) in quantum field theory, Supergravity, Applications of differential geometry to physics, strings, branes, High Energy Physics - Theory (hep-th), massive IIA supergravity, massive branes, T-DUALITY, Strings, supergravity, Branes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 51
  • 51
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
86
Top 10%
Top 10%
Top 10%
51
Green
gold