
Duchenne muscular dystrophy (DMD) is a lethal muscle disorder caused by mutations in the DMD gene for which no mutation‐targeted therapy has been available thus far. However, exon‐skipping mediated by antisense oligonucleotides (AOs), which are short single‐strand DNAs, has considerable potential for DMD therapy, and clinical trials in DMD patients are currently underway. This exon‐skipping therapy changes an out‐of‐frame mutation into an in‐frame mutation, aiming at conversion of a severe DMD phenotype into a mild phenotype by restoration of truncated dystrophin expression. Recently, stable and less‐toxic AOs have been developed, and their higher efficacy was confirmed in mice and dog models of DMD. In this review, we briefly summarize the genetic basis of DMD and the potential and perspectives of exon skipping as a promising therapy for this disease.
Dystrophin, Male, Muscular Dystrophy, Duchenne, Open Reading Frames, Morpholines, Oligonucleotides, Animals, Humans, Genetic Therapy, Exons, Muscle, Skeletal, Morpholinos
Dystrophin, Male, Muscular Dystrophy, Duchenne, Open Reading Frames, Morpholines, Oligonucleotides, Animals, Humans, Genetic Therapy, Exons, Muscle, Skeletal, Morpholinos
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 110 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
