Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Lancetarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Lancet
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropathology
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
The Lancet
Article . 2011
Neuropathology
Article . 2010
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exon-skipping therapy for Duchenne muscular dystrophy

Authors: Shin'ichi Takeda; Akinori Nakamura;

Exon-skipping therapy for Duchenne muscular dystrophy

Abstract

Duchenne muscular dystrophy (DMD) is a lethal muscle disorder caused by mutations in the DMD gene for which no mutation‐targeted therapy has been available thus far. However, exon‐skipping mediated by antisense oligonucleotides (AOs), which are short single‐strand DNAs, has considerable potential for DMD therapy, and clinical trials in DMD patients are currently underway. This exon‐skipping therapy changes an out‐of‐frame mutation into an in‐frame mutation, aiming at conversion of a severe DMD phenotype into a mild phenotype by restoration of truncated dystrophin expression. Recently, stable and less‐toxic AOs have been developed, and their higher efficacy was confirmed in mice and dog models of DMD. In this review, we briefly summarize the genetic basis of DMD and the potential and perspectives of exon skipping as a promising therapy for this disease.

Keywords

Dystrophin, Male, Muscular Dystrophy, Duchenne, Open Reading Frames, Morpholines, Oligonucleotides, Animals, Humans, Genetic Therapy, Exons, Muscle, Skeletal, Morpholinos

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 10%
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!